- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
02
- Author / Contributor
- Filter by Author / Creator
-
-
Roddy, AB (2)
-
Théroux-Rancourt, G (2)
-
Brodersen, CR (1)
-
Diggle, PK (1)
-
Schreel, JDM (1)
-
Schreel, Jeroen DM (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Climate change-driven drought events are becoming unescapable in an increasing number of areas worldwide. Understanding how plants are able to adapt to these changing environmental conditions is a non-trivial challenge. Physiologically, improving a plant’s intrinsic water use efficiency (WUEi) will be essential for plant survival in dry conditions. Physically, plant adaptation and acclimatisation are constrained by a plant’s anatomy. In other words, there is a strong link between anatomical structure and physiological function. Former research predominantly focussed on using 2D anatomical measurements to approximate 3D structures based on the assumption of ideal shapes, such as spherical spongy mesophyll cells. As a result of increasing progress in 3D imaging technology, the validity of these assumptions is being assessed, and recent research has indicated that these approximations can contain significant errors. We suggest to invert the workflow and use the less common 3D assessments to provide corrections and functions for the more widely available 2D assessments. By combining these 3D and corrected 2D anatomical assessments with physiological measurements of WUEi, our understanding of how a plant’s physical adaptation affects its function will increase and greatly improve our ability to assess plant survival.more » « lessFree, publicly-accessible full text available December 22, 2025
-
Schreel, Jeroen DM; Théroux-Rancourt, G; Diggle, PK; Brodersen, CR; Roddy, AB (, Integrative and comparative biology)As the site of almost all terrestrial carbon fixation, the mesophyll tissue is critical to leaf function. However, mesophyll tissue is not restricted only to leaves but also occurs in the laminar, heterotrophic organs of the floral perianth, providing a powerful test of how metabolic differences are linked to differences in tissue structure. Here, we compared mesophyll tissues of leaves and flower perianths of six species using high-resolution X-ray computed microtomography (microCT) imaging. Consistent with previous studies, stomata were nearly absent from flowers, and flowers had a significantly lower vein density compared to leaves. However, mesophyll porosity was significantly higher in flowers than in leaves, and higher mesophyll porosity was associated with more aspherical mesophyll cells. Despite these differences in cell and tissue structure between leaf and flower mesophyll, modeled intercellular airspace conductance did not differ significantly between organs, regardless of differences in stomatal density between organs. These results suggest that in addition to differences between leaves and flowers in vein and stomatal densities, the mesophyll cells and tissues inside these organs also exhibit marked differences that may allow for flowers to be relatively cheaper in terms of biomass investment per unit of flower surface area.more » « lessFree, publicly-accessible full text available December 15, 2025
An official website of the United States government
